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490 J.F.PADDAY AND A.R.PITT

The conditions that govern the equilibrium and stability of a meniscus have been obtained from the
first and second derivatives of the energy of the meniscus when it undergoes axisymmetric deformation.

The energy of forming a meniscus is defined in thermodynamic terms and methods are given for
calculating the free energy of a mensicus in the perturbed and unperturbed state.

The stable, critically stable and unstable equilibrium states of a meniscus are all defined in terms of an
energy profile, that is, the variation of energy with degree of perturbation. The variational problem of
defining parameters for a critically stable meniscus is solved graphically by using a three-dimensional
cluster of energy profiles, and it is shown that certain properties of the meniscus, notably volume or
pressure, reach limiting values at critical conditions.

Four types of stability are considered for each of three forms of axisymmetric menisci. The stability
types are those limited by volume or pressure, in conjunction with limitation by the size of the supporting
solid surface or the angle of contact. The three forms of menisci are pendant drops, sessile drops and
rod-in-free-surface menisci. Detailed stability criteria are given for each of the twelve different combina-
tions of stability type and meniscus form.

The stability criteria of this study are all derived by numerical interpolation methods applied to the
tables of equilibrium meniscus shapes — they are thus theoretical. Where possible they have been
compared with experiment and with other studies, and are found to predict critically stable states with
an accuracy greater than that likely to be found in the normal course of experiments.

1. INTRODUCTION

Tate (1864), a pharmacist, wished to dispense small volumes of liquids from pipettes and
syringes. He attempted to show that the amount of liquid falling away from an orifice was
constant — in the circumstances this was so. Since then many investigators have attempted to
solve the same problem but in every case only empirical equations covering a limited range of
data resulted.

The problem of predicting the amount of liquid falling away from an orifice is seen as con-
sisting of three parts:

(i) describing the equilibrium shape of a liquid drop;

(ii) prescribing the particular equilibrium shape of the drop when it reaches critical stability;
and

(iii) relating the amount of liquid falling away from the orifice to the critically stable volume
and shape and to hydrodynamic factors.

The first part of the problem has been solved for all bounded and unbounded menisci
(Bashforth & Adams 1883; Padday 1971; Padday & Pitt 19724; Padday 1972). The shapes of
pendant drops as well as of sessile drops, rod-in-free-surface (r.i.f.s.) menisci and liquid
bridges have been described in tabular form obtained by a computer integration procedure
with Laplace’s capillary equation.

The second part of the problem, that of prescribing critical stability conditions, has received
much less attention. The most significant contributions in this field are those of Plateau (1873),
who solved the gravity-free stability of soap films, and of Lohnstein (19074, b, 1913), who
investigated the cylindrical and pendant drop meniscus stability in a gravity field.

Though occasionally unrecognized by present workers, Lohnstein obtained the critical
stability conditions for one type of pendant drop system, making the intuitive assumption that
critical conditions were represented by the maximum drop volume attainable under Laplace
equilibrium conditions. He established that as the Bashforth & Adams shape factor # (Bashforth
& Adams 1883) was varied, the volume of the drop reached some maximum value. Bouasse
(1924), Bakker (1928) and Gillette (1970) review critically and in detail previous studies,
including Lohnstein’s treatment, and they indicate that no decisive solution to the stability
problem of axisymmetric menisci in a gravity field has been found in terms of an energy
minimum.
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THE STABILITY OF AXISYMMETRIC MENISCI 491

In addition, a large number of experimental studies (Rayleigh 1899; Harkins & Brown 1919;
Hayworth & Treybal 1950; Null & Johnson 1958; Poutanen & Johnson 1960; Scheele &
Meister 1968; Halligan & Burkhart 1968; Halligan & Agrawal 1971; Izard 1972) have been
reported, the best known being that of Harkins & Brown, whose study is currently used for
the drop-weight method for surface tension. These studies did not set the criteria for stability.
Instead they combined the third or kinetic part of the study with the second part to give useful
but nevertheless empirical equations for the breakaway volumes of pendant drops.

In this study we propose an analysis of the second part of the problem only, namely the
criteria of critical stability of axisymmetric menisci in a gravity field. The third part, the dynamic
factors, does not form a part of this study.

In order to preserve physical reality we have presented the general variational problem as
applied to a pendant drop by way of example. However, other types of stability, of pendant
drops and of other bounded menisci, will also be considered and the findings of the pendant
drop example are applied generally but with great care in the assignation of the signs of the
vector quantities.

2. ENERGY OF MENISCUS FORMATION
Work of forming a meniscus at equilibrium

Consider the energy associated with the growth of a meniscus such as a pendant drop, formed
in the manner shown in figure 1. The drop is formed at the tip of a frictionless syringe such
that no work is performed on or by the system in transporting liquid from the body of the
syringe to the aperture at the tip. The only work done in forming the drop is that due to changes
in area of the interfaces and that due to changes in the position of liquid when it passes from
the tip to the equilibrium position within a drop.

O e e e e e e e o e e s o e e e e e o] O

Y

Ficure 1. Formation of a pendant drop using a frictionless piston. O-O, level of free surface.

The pendant drop may be successively increased in size by adding small elements of volume,
dV isothermally and reversibly until, at some limiting volume, the drop becomes unstable and
a large portion falls away. During this growth the work, W, performed on the system will
change and it is this work or energy that we propose to study. The incremental change in the
work done, dW, is given by

dW = —p diy—V, dp+vy dd — (ys—7;) d4’—d(PE). (1)
The first term on the r.h.s. represents the work done when the volume of liquid changes as it

passes from the bulk to the miniscus state. Here we consider incompressible liquids only and
41-2
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492 J. F.PADDAY AND A.R. PITT

dVs is effectively zero; thus the term will be omitted altogether. The second term accounts for
the change in vapour pressure due to the changes in the mean curvature of the liquid—-vapour
interface as the drop grows. Again for most practical systems this term may be omitted without
serious error because the change, dp, is so very small. The third term on the r.h.s. is the work
done in expanding the liquid-vapour interface, the fourth term the work done in changing the
area of that portion of the tip in contact with the drop, and the fifth term the potential energy
lost by the liquid as the liquid descends from the tip to its equilibrium position in the drop. This
last term may be expressed in terms of the volume of the drop and the position of its centre of
gravity.

Equation (1) may be modified by substituting for (ys—1;) using Young’s equation (Young
1804)

Ys—7Y1 = ycost (2)
and for d(PE) according to
- d(PE) = pgVdZg+pgZgdV (3)
so as to give
dW = ydA4—2rX dXycosO—pgVdZg—pgZgdV, (4)

where the change in tip area is given by
d4’ = 2rX dX. (5)

As the pressure on the syringe plunger equals the pressure within the liquid at the tip, the
incremental work, dW, is given by,

AW = pgZ.dV, (6)
where pgZ;, the hydrostatic pressure at the tip, is a characteristic property of the meniscus.
Equations (4) and (6) may now be combined and made dimensionless by dividing by appro-
priate powers of £, the meniscus coefficient, where

k= (y/pg)} (7)

to give
dW|yk? = ZidV[k* = dA[k?—2nX dXcosO[k*— (ZgdV+V dZg) [k*. (8)

The integral form of equation (8) is thus:

N4
Wvk? = f ZidV[kt = (A—A4y)[k? — (X% — X3) w cosO[k* — VZg[k®. (9)
V=0
These equations apply only to a single component liquid in contact with vapour and with an
insoluble tip, and it is assumed that p and g are constant throughout the system.

Work of forming a meniscus not at equilibrium

The pendant drop formed by the process of equilibrium growth can possess only one stable
shape and then only when its volume is less than the volume of the critically stable drop.
However, it is clear that a given volume may possess an infinite variety of shapes each of which
possesses a different work of formation.

The work done on the system to create a drop of any arbitrary shape will still be given by
equations (4), (8) and (9). Such a drop can only exist transiently and is called perturbed to
distinguish it from the drop which rests at equilibrium.

Everett & Haynes (1972) indicate that at constant temperature and constant volume of
vapour in the system, /¥ may be identified with the Helmholtz free energy of the meniscus in
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THE STABILITY OF AXISYMMETRIC MENISCI 493

excess of that which the liquid would have in the bulk state. The identification of the change in
Helmholtz free energy, dF, with d W is given in Appendix A. It can also be obtained from Buff’s
treatment of the thermodynamics of curved surfaces (Buff 1960).

Comparison with Buff shows clearly we have assumed that:

(i) The curvature of the surface does not affect the value of surface tension. For small radii
of curvature (< 108 m) the assumption can lead to significant errors, but such radii are outside
the scope of this study.

(ii) The volume of the liquid does not change measurably when passing from bulk to surface
state. This assumption restricts our analysis to conditions well removed from the critical
temperature.

(iii) The liquid forming the drop is pure and in contact with its vapour and an insoluble
solid only.

It is, of course, possible to include for these other effects using Bufl’s extra terms in equations
(8) and (9).

The energy profile of a meniscus

The energy profile of a meniscus is defined as the integral work or free encrgy of a drop,
according to equation (9), expressed as a function of the degree of perturbation. The perturba-
tions that may be imposed on an equilibrium drop can follow an infinite number of paths, but
in this study we consider axisymmetric perturbations from one ‘Laplace shape’ to another.
A ‘Laplace shape’ is defined here as an axisymmetric drop shape wherein the sum of the
principal curvatures varies linearly with vertical distance from a fixed point.

In physical terms this type of axisymmetric perturbation would occur if the gravitational
acceleration were momentarily altered to change the drop to some new equilibrium shape and
then returned instantly to its initial value. The perturbed drop would then be in a non-
equilibrium shape and its energy is calculated according to equation (9) but with the unperturbed
value of g or k. The perturbation is equivalent to ‘flicking’ a pendant drop on a rod, which
if done with sufficient force, will dislodge it.

In this study we make the hypothesis that perturbations of a meniscus from one axisymmetric ¢ Laplace
shape’ to another are perturbations of lowest energy and thus are those which are most likely to occur and to
yield the critical properties.

By restricting the perturbations of this study to those that conform to a ‘Laplace shape’, the
degree of perturbation may now be assessed quantitatively from a shape factor such as that
defined by Bashforth & Adams (1883). They showed that the shape of a pendant (or sessile)
drop could be given in terms of characteristic parameters of the system according to

B = pgb*ly = b*[?, (10)
where f# was the shape factor. This shape factor is very suitable for expressing the perturbation
of a drop quantitatively. Other properties such as meniscus angle, ¢, the height, Z, of the drop
and the position of the centre of gravity, Zg, in relation to the tip are all dependent on £ and
hence are equally useful in expressing the degree of perturbation numerically.

‘The energy profile of a pendant drop as a function of the perturbation, f, is shown in figure 2.
In addition the shape profiles at selected points on the curve are shown at the top of the diagram.
The energy profile is not defined by the equilibrium shape alone. One must further define the
conditions under which perturbation takes place. In the example of the pendant drop of figure 1
these conditions of perturbation are given as radius limited and volume limited. This means
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494 J. F.PADDAY AND A.R.PITT

that during the process of perturbation the radius of contact of the drop with the tip and the
volume of the drop both remain fixed.

The method for calculating the energy of a meniscus in its perturbed or unperturbed state
using tables of shape properties is given in appendix B. The tables (Padday 1972) used for
deriving energy profiles were obtained by integrating the capillary equation of Young (1804)
and Laplace (1803),

YRy +1[Ry) = pgZs, (11)
/Ry +k[R, = ZiE. (12)

“eeyyy

which in dimensionless form is

0.3 0.5 07

Figure 2. Energy profile of a pendant drop. Work of formation as a function of perturbation. X[k = 1.200;
V[k* = 4.9638; C is position of stable equilibrium and E is position of unstable equilibrium. Shape profiles
are given for the points indicated except for A which is off the graph.

The tables contain the coordinates of the shape, the principal radii of curvature, the inte-
grated areas and volumes, and in some the integrated moment (PE) of the volume about the
free liquid level. Thus with these tables one has all the data required to derive the energy profile.

The method by which each energy point is found is essentially a location or interpolative
procedure. The value of V/X? is known from starting or experimental conditions, and all that
is necessary is to find the position within a given profile at which V/X? equals the fixed value.
At this position the shape and boundary conditions are now fixed, but not the size. The profile
shape is then scaled to the correct tip size by multiplying with an appropriate magnification
factor, M, such that the value of X[k obtained from the tables equals the experimental value.
The integral meniscus energy is then obtained by subtracting the potential energy term from
the area terms. Other points at different shapes or £ values are now sought and evaluated in the
same way until the whole energy profile, such as that of figure 2, is established.

For a given shape, f, there are two points at which V/X?® (experimental) equals the ratio
obtained in the tables. This arises because within a given shape profile the value of V/X3
increases from zero to some maximum value and then decreases, provided V/X? experimental


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY /)

PHILOSOPHICAL
TRANSACTIONS
OF

A

Py
/A \
A N

Y,

9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE STABILITY OF AXISYMMETRIC MENISCI 495

is less than the maximum value of the profile. It must be emphasized that the maximum value
of B, which is seen in figure 2, does not correspond to the position of minimum energy.
The energy profile of figure 2 possesses two equilibrium positions where

(dW[dB) sy, x,1 = O. (13)

At the lower position, C, where I/ obtains a minimum value, the drop is in stable equilibrium

and at the upper position, E, the drop is in unstable equilibrium. At each of these points, but

not at any other position, the drop is in true ‘ Young-Laplace’ equilibrium and the magnifica-
tion factor, M, becomes equal to unity.

10+ W

7 80

Ficure 3. Energy profiles as a function of pendant drop volume. +, points at stable equilibrium; A, points
at unstable equilibrium; @, point at critical equilibrium; O, points unstable and not at equilibrium.

The energy profile of figure 2 is that of a drop which can exist at stable equilibrium. As the
volume of the drop is increased, so the energy profile changes in shape as is seen in figure 3.
In this figure the energy profile of figure 2 is plotted with Zg/k instead of # as the measure of
the degree of perturbation. This is done in order to emphasize the maxima and minima that
occur in the energy profiles of those drops of small volume. Four energy profiles, each of different
but constant volume, are shown and all refer to a single tip radius. The two profiles for small
volume show the maxima and minima of the unstable and stable equilibrium states referred to
in table 1. As the volume of the drop increases so the unstable and stable equilibrium points come
closer together until at the critical volume the two points merge and the profile no longer
possesses a minimum but only an inflexion point. At this critical meniscus volume

(BPW[AS) r,p, x,1 = (PW]AZE)r,p, x,1 = O. (14)
This critical meniscus point is the. position being sought in this study. Once found, it enables all
critical meniscus properties to be obtained.

Energetically, a meniscus may be in any of four states: stable equilibrium, unstable equi-
librium, critical equilibrium and non-equilibrium. The definitive energy criteria of these four
states are given in table 1. Only the stable equilibrium may be obtained experimentally; all
other shapes are obtained transiently only.
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TaABLE 1. CRITERIA FOR EQUILIBRIUM AND STABILITY OF AXISYMMETRIC MENISCI

state dW/[dp or dW|d$  d2W[dfS? or d2W[dp?
stable equilibrium =0 >0
unstable equilibrium =0 <0
critical equilibrium =0 =0
non-equilibrium (unstable) £ 0 —

The variational problem

The construction of energy profiles in order to obtain the properties of a meniscus in its
critical equilibrium state is tedious and time-consuming. Instead, we have found a solution to
the variational problem which has allowed the critical conditions of a meniscus to be sought
in terms of the first order variation of an easily measured property.

The work of formation of free energy of an axisymmetric meniscus, as defined by equation (9),
may be shown to be a function of three independent variables of which

Wik = £(8, VIR, XJk) (15)
is an obvious example; V/k3, X[k and g define the size and shape of the meniscus and its degree
of perturbation.

At equilibrium, the first differential, equation (8), must be zero; hence a degree of freedom,
in this case f, is lost. Under conditions of critical equilibrium the second differential also equals
zero, and a further degree of freedom, in this case the volume V3, is lost. Thus at critical

equilibrium the state being sought in this study, the tip size X/k completely specifies the system
and the critical meniscus volume, together with other critical properties, is dependent on

X/k alone.
The work of formation in an equilibrium state is given by
Wik = fo(VIE, X]k) (16)
and that in a critical state is given by
Wivk® = fa(X[k). (17)

Equation (16) is a function such that for a fixed value of V/k® and X/k two solutions are
possible.

As V[k? is increased at constant tip size these two equilibrium values of the energy converge
until at critical equilibrium the two values reach a single maximum value. At this point we
find that no further equilibrium values of V/k® may be found in excess of the critical volume and
therefore this value attains a maximum and

(dVIE*dB) g, x,1 = O (18)

That a pendant drop must reach this maximum volume at critical conditions was first suggested
by Lohnstein (1907a) (cf. Bakker 1928).

The occurrence of a maximum volume at critical equilibrium may be shown algebraically
by considering the sign and magnitude of each term in equation (9), in its first-order differential,
equation (8), and in its second-order differential. However, a much clearer explanation is given
by plotting out a series of energy profiles in a three-dimensional graph as in figure 3.

In this figure the energy of a pendant drop of fixed tip-radius X/£ is plotted as a function of
both volume V/k* and the perturbation. We have already noted that the degree of perturbation
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THE STABILITY OF AXISYMMETRIC MENISCI 497

may be estimated from other characteristics of the meniscus and here we have used the depth
of the centre of gravity of the drop below the tip; by using this criterion the energy profile is
extended and prevented from looping over on itself and thereby obscuring the maxima and
minima.

Four energy profiles are shown in figure 3. The first two profiles at the smaller volumes are
those with clearly visible stable and unstable equilibrium states. The third energy profile is
that of the critical meniscus state, and the fourth energy profile is that of a drop, the volume
of which is larger than the volume of the critical state and therefore is never at equilibrium.
Clearly this fourth state cannot be obtained experimentally.

@

777%

)

ST [T TS

7277722

Ficure 4. Types of pendant drop stability: (i) volume-radius limited; (ii) pressure-radius limited;
(iii) volume-angle limited; (iv) pressure-angle limited.

The energy surface of figure 3 is a plot of f; (8, V/k3, X[k) with the value X/k fixed and g
expressed as Zg/k. The continuous line between the energy profiles connects the stable equili-
brium points, and the broken line the unstable equilibrium points. These two lines meet at the
condition of critical stability and show quite clearly that dV/dZg, and hence d¥/df, equal zero.
Thus at critical equilibrium the volume of liquid forming this particular drop reaches a maximum value.

So far, the treatment has been applied to only one type of stability of one form of bounded
meniscus. In the more general treatment we propose to show that the same procedure may be
applied to evaluate the critical stability criteria of many other types of axisymmetric menisci.

Stability of different forms of menisci

We have investigated differing types of stability associated with the three different types of
bounded menisci (Padday 1971); sessile drops, pendant drops and rod-in-free-surface (r.i.fs.).
Four different types of stability may be devised experimentally for pendant drops and these are
shown in figure 4. In this figure, the first type, described here as that with volume-radius limited
stability, is the example already considered. The other types of stability and their criteria are
given in table 2.

In forming a pendant drop by successively increasing its volume, the pressure inside the

42 Vol. 275. A.
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498 J. F.PADDAY AND A.R.PITT

liquid at the plane of the tip first increases and then, after reaching some maximum value,
decreases. In order to demonstrate this effect, the pressures at two tips of different sizes have
been plotted diagrammatically with increasing volume in figure 5. In this figure, 15 separate
shapes of different £ values have been drawn to scale and have been placed at a distance from
the free liquid level such that the vertical scale represents the hydrostatic pressure at all points
on each meniscus. Each meniscus is now cut off in a plane corresponding to X/k = 0.2, and the
position of this plane on the vertical axis represents the pressure at the tip. The shapes of larger
f values are also cut in planes corresponding to the larger tip, X/k = 1.2. It is thus seen that the
pressure at both tips first increases, then decreases before reaching the value limited by volume.

TABLE 2. TYPES OF MENISCUS STABILITY AND THEIR CRITICAL EQUILIBRIUM CONDITION

(i) volume-radius limited (A(VIE)[dB)r 1 x = O

(ii) pressure-radius limited (A(Zt[k)[dB)r, 1, x = O

(iii) volume-angle limited (d(VIE)|dB)z, 1,y = O

(iv) pressure—angle limited (d(Zt/k)|dB)z, 1, = O
B

100 10 40 10 07 06 05 03 02 0i 004 01 02 029 02

f'l"”l‘g"lf?’k}' U'U_ [T g o

(=

T

Z [k

10t P

Ficure 5. Growth of pendant drops: each profile is drawn to scale and is positioned in its correct relative position
to the free surface. vz, position of tip X[k = 1.2; kal, position of tip X[k = 0.2. B values are indicated.

The shape factor corresponding to the maximum tip pressure gives the critical condition for
the stability of a pendant drop formed with a constant pressure head as shown in figures 4 (ii).
This system is designated the pressure-radius limited system. Perturbations of the pressure-
radius limited pendant drop will now involve a change in volume of the drop. Below the
maximum pressure, small volume changes will always be balanced by pressure changes which
prevent further diminution or growth. However, when the maximum pressure is reached, any
increase in volume now results in uncontrolled growth until detachment takes place.

Energy diagrams of the type given in figure 3 show clearly that the critical energy condition
of table 1 corresponds to this maximum pressure where

(AZy/kdp) 1, x,1 = . (19)

It must be emphasized that the change in direction of £ that occurs in the region of this
critical condition again does not correspond exactly with the critical condition, and serious
errors can arise if such an assumption is made. Also, the centre of gravity Zg is not at its
maximum distance from the free surface at the point of critical pressure.

Further types of stability are found when the liquid forming the drop forms a finite angle of
contact with the solid supporting the drop. With such systems the meniscus angle, ¢, can never
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be less than the contact angle, 0, except when the drop is supported by the liquid in the orifice
of the tip. Thus when, during the growth of the drop, ¢ reaches the value of 6, the drop spreads
along the under surface of the tip and X/k is no longer constant. Systems such as those shown
in figures 4 (iii) and (iv) are designated volume-angle and pressure—angle limited pendant drops
respectively.

Equation (9) is basically, the fundamental equation from which the energies of all four types
of menisci were derived. However, some of the terms in the equation remain constant either
during growth or during perturbation, hence the equation may be simplified to the following
working equations for use within the limitations given:

(i) for all radius limited menisci,

(WIvE)p, x,1 = AR — ZgV[k* +C, (20)
where
C = Ay[k? = nX?[k? (21)
and
AWk p, x, = dA[k*—d(VZg)[K, (22)
which for volume-radius limited perturbations becomes
AWk z, x,v, = dA[R?—V dZg[k?; (23)
@) @ii)

m

z w a4

7

SN
N
N
]
N
N

Ficure 6. Types of sessile drop stability: (i) volume-radius limited; (ii) pressure-radius limited,
(iii) volume-angle limited; (iv) pressure-angle limited.

(ii) and for all angle limited menisci

(WIvk®) g, 6,1 = AJK*—nX?cosO[k* — VZg[k* +C,} (24)
where
C = nX}(cosf—1) (25)
and
(AW |yk?®) g, 4,1 = dA[K* — 27X dX cosO[k* —d(VZg) [k, (26)

42-2
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which for volume-angle limited perturbations becomes
(dW[vk®) 1y, 6,k = d4[k?—2nX dXcosO[k*— V d Zg[k*. (27)

Many energy profiles have been constructed with these equations, and in every case we find
that the conditions we have adopted for critical stability given in table 2 are found precisely
at values corresponding to the criteria given in table 1.

The pendant drop meniscus is only one of the three types of bounded meniscus, and here
we have extended the study to include stability conditions of sessile drops and r.i.f.s. menisci.
Diagrammatic representations of these latter systems are shown in figure 6 for sessile drops and
figure 7 for r.i.fs. menisci.

(i) (ii)
(iii) (iv)

S T T et b R

Ficure 7. Types of rod-in-free-surface stability: (i) volume-radius limited; (ii) pressure-radius
limited; (iii) volume—angle limited; (iv) pressure-angle limited.

We have found that the energy profiles calculated according to equations (20) to (27) apply
equally well to sessile drops and r.i.f.s. menisci, with the exception that the area and potential
energy terms of the r.i.f.s. menisci are now summed instead of subtracted. In this way we have
established the properties of the menisci at critical stability for the four different types of limita-
tion of the three meniscus forms, pendant drops, sessile drops and r.i.fs. systems.

3. METHODS FOR EXTRACTING CRITICAL PROPERTIES FROM PROFILE TABLES

The maximum or critical volume that may be supported by a tip of known size in the volume—
radius limited pendant drop may be obtained in principle by constructing sufficient energy
profiles in figure 3.

A second method involves extracting the value of V/k? at constant X/k from the tables (Padday
1972) and then plotting V/k? as a function of the shape factor § of each table. Such a plot reveals
the maximum value provided the set of tables possess sufficiently small increments in . For
most systems this is usually so, and the final results may be obtained very accurately when
a satisfactory interpolation procedure is used. Though much simpler than the energy profile
method, this interpolation procedure is still lengthy.
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A third method, the one used widely in this study, is by far the simplest and is sufficiently
accurate for all experimental purposes. This method is called ‘the envelope construction
method’, and involves plotting a series of functions and then drawing the function that en-
velopes all the other functions.

When we evaluate the properties of the volume-radius limited pendant drop, the value V/&3 is
plotted as a continuous function of X/ for a given shape, f. This same operation is then repeated
for other fixed values of £ until the whole graph is built up as a network of shapes as in figure 8.
The graph possesses a clearly defined border or envelope, and this border gives the critical
volume as a function of X/k. In figure 8, only parts of the individual functions are plotted, for
clarity.

ik

X[k

F1cure 8. Volume of a pendant drop as a function of tip radius. Shape factors £ are shown for some of the profiles:
the envelope curve is the critical volume as a function of tip radius.

These plots were obtained with a Hewlett-Packard 9100A calculator coupled to a 9125A
automatic plotter. Precision graph paper was used and a plotting accuracy of +0.005 cm was
obtained. Computer programs, already described (Padday 1971, 1972), were written in simple
machine code which performed a step-by-step integration of the local equilibrium of the Laplace
equation. The envelope line was constructed with the use of a flexible curve. This method
would not have been practicable without the automatic plotter.

Other properties such as pressure, angle of contact, meniscus height and shape factor for the
critically stable condition were obtained from interpolation in the tables using the critical
value of V/k® and X[k obtained from the envelope construction graph.

4. STABILITY OF PENDANT DROPS

The growth and the general conditions that lead to the instability of a pendant drop have
already been outlined in the introduction. It is also noted that the four different pendant drop
systems shown in figure 4 are those for which we give the conditions of critically stable equi-
librium. These data apply equally to an emergent bubble.
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Volume—radius limited pendant drop

This type of drop is formed according to the system of figure 4 (i). The tip is assumed to be
fully wetted; hence X/k remains constant as the volume of the drop is increased successively
from zero, in the manner already described in reference to figure 5.

At the birth of the drop the meniscus angle ¢ is zero and # = oo (for a flat surface). As the
drop grows ¢ increases and f decreases. Though Bashforth & Adams (1883) and Padday (1971)
designate £ as being negative for pendant drops, we have not used this convention here but
rather have retained / as being always positive. This is so that the square root of £ in equation (7)
possesses real values only.

Ficure 9. Shape of critical pendant drop when Xk is very large.
(> 3.2) ‘Bath tap profile’. ¢ < 0°. X[k = 5.4.

During the initial stage of growth the hydrostatic pressure in the liquid at the tip increases
with volume. If the meniscus angle reaches 90° (i.e. only when the tip is relatively small) the
shape factor attains a minimum value and further increases in volume result in £ increasing. In
the vicinity of, but not at, ¢ = 90° the tip-pressure reaches a maximum value. Farther growth
in volume continues until the inflexion point in the profile is reached when the meniscus angle
obtains a maximum value. If the radius of the tip is relatively large, then the inflexion point is
reached before ¢ = 90°, and in this event, the shape factor does not change direction during
growth of the drop. From this inflexion point, as for all tips, the drop continues to grow with
¢ now decreasing, until finally the critical volume is reached. All these growth patterns are
best understood by studying figure 5 carefully and comparing the shapes with a set of tables.

An important feature of the condition for critical stability of the volume-radius limited
pendant drop is that the position of the tip lies between the first and second inflexion points
on the drop profile.

The maximum or critical volume was obtained by the envelope construction method already
given in figure 8. This figure not only shows clearly that a maximum volume is reached but also
that the volume curve of each shape factor crosses all other curves once only. This means that
at each intersection two Laplace solutions exist. Inspection now reveals that one curve represents
stable equilibrium (at a point on the curve between the origin and the critical point) while the
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other curve represents an unstable equilibrium (at a point on the curve which has passed the
critical point). These two Laplace solutions are the points C and E on the energy profile in
figure 2.

The profile of a pendant drop formed at small tips is part of a profile consisting of a multiplicity
of distorted unduloids (Padday 1971). For these menisci, multiple solutions appear to give rise
to a series of unstable equilibrium states. However, these states have little practical significance
because they cannot be approached from a stable state.

An important feature emerging from figure 8 is that the critical volume itself reaches a maxi-
mum value (when X/k ~ 3.2). At this point the meniscus angle reaches a value ¢ = 0°.
However, stability criteria do not cease to apply at this point and at even larger values of X[k
the stability now refers to the meniscus formed at an orifice, such as that of figure 9. This is the
form of a drop as it breaks away from a large orifice such as that of a bath tap.

104 T
103} ‘ -
0.2
stable unstable
5102k .
= 10
10 ~
0725
0.85
1 , 1.2
0.1 1 10

X[k

Ficure 10. Pendant-drop stability: critical volume ratio of a volume-radius limited drop
as a function of tip radius. £ values are indicated.

Experimentally one measures both V and X, £ often is unknown. A more useful form of the
critical volume data of the volume-radius limited pendant drop is given in figure 10, in which
V| X? corresponds to the volume ratio of the critical shape. The volume falling away is always
less than the critical volume, firstly because experimental vibration promotes instability at an
earlier stage of drop formation, and secondly because the whole volume does not fall away.

The meniscus angle, ¢ for conditions of critical stability, varies with tip radius as shown in
figure 11. This figure indicates that for small tip radii the angle ¢ = 90° and the liquid is held
just above the narrowest point of the neck of the profile. As the tips become larger, so the angle
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stable

80

unstable

0.1 1 10
X[k
Frcure 11. Pendant-drop stability: critical meniscus angle of volume-radius limited drop
as a function of tip radius.

10
w,’o/
B
0.1
0.01 1 1 |
0 1 2 3

X[k
Ficure 12. Pendant-drop stability: critical shape factor of a volume-radius limited drop
as a function of tip radius.

- 06
p 0
’ =
-1 10N
-1 20

0 1 X 1 ‘

0.01 0.1 1 10

X[k

Freure 13. Pendant-drop stability: critical height, Z[k (O) and critical pressure, Z [k (x ),
of a volume-radius limited drop as a function of tip radius,
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at which critical conditions are reached decreases to zero. Further increase in tip size results in
the shape of the critically stable profile taking the ‘bath tap’ configuration of figure 9. In this
situation the angle becomes negative.

In figure 12 the shape factor £ of the critically stable pendant drop is plotted as a function of
tip radius. This plot enables the critical shape of the drop to be sought in the tables. An interest-
ing feature of this plot is that almost all shapes of practical interest lie in the region g = 0.1
to 1.0.

The tip pressure of a volume-radius limited drop at critical equilibrium is very much less
than the maximum pressure shown in figure 5. We have therefore plotted this tip pressure Zi/k
for conditions of critical stability in figure 13. An important feature of this curve is that for
large tip radii, X/k > 1.1, the tip pressure assumes a negative value; the tip being above the
level of the free flat surface. Figure 13 also shows the actual height, Z/k, of the pendant drop
in its critical state. The height of the drop increases, as expected, with tip radius, but when
X/k reaches approximately 1.7, the height passes through a maximum value and then decreases.
Large drops are thus much flatter in shape.

ZJk

10 1

. Xk
Ficure 14, Pendant-drop stability : pressure of a drop as a function of tip radius: the envelope curve is the critical
pressure as a function of the tip radius. Shape factors £ are shown for some profiles.
Pressure—radius limited pendant drop

A pendant drop system of this type is shown in figure 4 (ii), and its growth, caused by succes-
sively increasing the hydrostatic pressure, has already been described. The critical conditions

43 Vol. 275. A.
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for this system are given in table 2 and are obtained when the pressure at the tip supporting
the drop reaches a maximum value. The growth to this point is shown diagrammatically in
figure 5.

We obtained the maximum pressure at the tip supporting the drop by the envelope construc-
tion method and also by direct interpolation from the tables: both methods agreed very well.
The plot of figure 14 shows the shapes of pendant drops of successive £ values plotted in such
a way that every point on each profile corresponds to its correct hydrostatic height. The enve-
lope curve of this figure thus becomes the maximum pressure curve and represents the stability
criteria being sought. The stability criteria at tips of small radii are very difficult to interpolate
and so critical pressures in this region are plotted separately in figure 15, again as a function
of X/k, but with the ordinate on a logarithmic scale.

100

104

ZJk

0.1 1 Ll 1 | L 1

XJk

Ficure 15. Pendant-drop stability: critical pressure of a pressure-radius limited drop as a function of tip radius,

The critical pressure at small tips, X/t < 0.5, occurs when the meniscus angle is very nearly
90° and the pendant drop approximates to a hemisphere. For these conditions

pgZy = 2ysing|X x (2y[X)ygp0 (28)
ZiJk = 2k/X. (29)

or

The main use of the stability data of pressure-radius limited pendant drops lies in predicting
the head of liquid required to start flow through a jet, the tip of which is fully wetted. Again,
we emphasize that these critical pressures do not correspond to the shapes where the centre of
gravity Zg is at a maximum,
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Volume—angle limited pendant drop

A pendant drop may be formed at a very large tip rather as that shown in figure 4 (iii). In
this example the pendant drop builds up in a series of stable equilibrium states by the addition
of liquid through an orifice in the plate or tip. At first the tip is unwetted and only the orifice
supports the meniscus. When the meniscus angle ¢ reaches the value of the contact angle 6,
the drop spreads out along the plate at constant angle ¢ = 6 until critical conditions initiate
break away. At critical conditions the volume of the drop reaches a maximum equilibrium
value.

201

1.75

o 40 s . 10 10
¢[deg

Ficure 16. Pendant-drop stability: volume of a volume-angle limited drop as a function of meniscus angle.
The envelope curve is the critical volume as a function of the meniscus angle where ¢ = 0. Shape factors £
are shown for some profiles.

In figure 16 we have plotted the volume V/k® as a function of meniscus angle for profiles of
16 different £ values and have constructed the envelope function to give the volume at critical
stability as a function of angle.

The most interesting feature to emerge from this figure is that at ¢ = 0° the critical volume
reaches a well-defined maximum value which corresponds to the maximum of figure 8. This
maximum volume is that of a critically stable drop hanging from a fully wetted ceiling. As
already noted, the angle of the critical meniscus of figure 16 may become negative for the
system of figure 9, but these values have not been included in the graph.

These data give the complete stability criteria for the pendant drop detachment from the
outside of a cone, the system investigated by Brown & McCormick, (1948).

Pressure—angle limited pendant drop

This system consists of a large plate with a small orifice in it connected to a constant pressure
head, the hydrostatic height of which can be successively increased. The meniscus one might
expect to form is shown in figure 4 (iv).

Experimentally a meniscus forms on the underside of the plate at the orifice and the drop
then grows in size with the meniscus angle increasing until it equals that of the contact angle of

43-2
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the liquid on the solid. Growth up to this point is volume-radius limited, the radius being that
of the orifice, and as growth continues, the pressure increases. Provided that the orifice is
relatively small, the maximum pressure at the tip is reached when the meniscus angle equals the
contact angle.

Any further increase in volume now results in spreading on the underside of the plate. As
spreading takes place X/k increases resulting in a decrease in tip pressure (figure 13) and hence
unstable growth. When the contact angle condition is met and the maximum pressure is
reached, further uncontrolled growth takes place as though the pendant drop were volume-
angle limited. When maximum volume is reached the drop falls away.

90°
2k A —
X X
o 60°
120° /
%
= 0°
2 o 7
N 7 1’\\\
150°
0 . . A
0.01 0.1 1
X, [k

Ficure 17. Pendant-drop stability: critical pressure product (Z, X,[£?) of a pressure—angle limited meniscus
as a function of orifice radius. Contact angles are indicated.

In figure 17 the product of the critical orifice pressure Zi/k and the orifice radius Xy/k is
plotted as a function of the orifice radius for five different angles of contact. When the orifice
radius is small, Xofk < 0.05, it is clear that the tip pressure is given by the relation of equation
(28) but with X substituted by X;. For larger orifices the pressure at critical conditions decreases,
until for very large orifices the contact angle condition is never met and the stability criterion
is volume-radius limited. For poorly wetted surfaces, when 6 > 90° the angle criterion may
never be met because as already noted, the meniscus angle itself reaches a maximum value (at
the inflexion point on the profile). Thus, if the maximum meniscus angle is always less than the
contact angle the pressure—angle limited criteria do not apply.

5. STABILITY OF SESSILE DROPS

From earliest times it has been recognized that sessile drops resting on an infinitely large flat
uniform horizontal surface are always stable. It is also well known that a sessile drop resting on
a circular horizontal disk is only stable when the volume is relatively small. As the volume is
increased, a point is reached where a part, if not all, of the liquid ‘pours’ over the edge of the
disk. We believe the onset of this instability is of the same nature as that of the pendant drop
and accordingly shall analyse for critically stable conditions.

Here we consider the stability of the four different types of system shown diagrammatically
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in figure 6. The designations, stability criteria and conditions are the same as with pendant
drops and thus are given in tables 1 and 2.

The evidence that dV/dg (or dV/d¢) is zero and the equilibrium volume reaches a maximum
at critical equilibrium again relies on the solution of the variational problem concerning the
relations between the energy of the sessile drop with its volume, the plate size, and the degree
of perturbation from the equilibrium state. In figure 18 we present a three dimensional plot
of the energy profiles of volume-radius limited sessile drops as a function of both volume and
degree of perturbation. As pointed out in the introduction the degree of perturbation may be
represented in a variety of ways. Here we have found that the use of ¢, the angle of the meniscus
at the plate, separates the maximum and minimum equilibrium points on the curve more
conveniently than does Zg[k used in figure 3. As with figure 3, it is immediately obvious that
a maximum equilibrium volume is reached when at critical conditions

(d*W[d¢?) 1 v,xx = 0.

400- 360

2

300

200
100

200

FiGure 18. Sessile-drop stability: energy profiles of a volume-radius limited drop as a function of drop volume:
+, points at stable equilibrium; A, points at unstable equilibrium; B, point at critical equilibrium; O, points
that are unstable and not at equilibrium. X[k = 4.6316.

Unlike the pendant drop, a sessile drop’s stability is very sensitive to the angle of the plate
or disk supporting it. Whereas a pendant drop shows its characteristic shape when the tip is
completely wetted and a small variation in ¢ of a stable drop, does not lead to instability, the
sessile drop only obtains its characteristic shape when its contact angle is large, as with poorly
wetted surfaces of low adhesion. The large contact angle coupled with the very much shallower
energy trough of the stable system, leads to an instability that may be initiated by vibration
or by the plates not being level. Experimentalists know only too well the difficulties of con-
trolling the position of large sessile drops.

In figure 19 the profiles of a sessile drop in its unperturbed and perturbed form are shown.
Shape C represents the stable equilibrium profile at # = 3750. It represents a fairly large drop
with a meniscus angle of 180°. Perturbations that reduce this angle tend to reduce the value
of # and raise the centre of gravity of the drop: these perturbations always result in free energy
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increases. Perturbations that increase the angle of the meniscus change its shape so that the
drop overhangs the plate to an ever increasing degree. When the unstable equilibrium state
is reached any further change results in irreversible breakaway.

At critical stability the energy barrier between the stable and unstable states again reduces to
zero and maximum drop-volume is reached.
-4

] I (@F (oI =2

F1cure 19. Perturbated shapes of a volume-radius limited sessile drop: A, # = 1.0; B, # = 100; C (stable equi-
librium), # = 3750; D, £ = 3750; E, f = 100; V[k® = 144.2; X[k = 4.6316. (These shapes are those
relating to profile 2 of figure 18).

Volume—radius limited sessile drop

The critical stability conditions of this system (figure 6 (i)) were obtained by the envelope
construction method.

In figure 20 the volume of a sessile drop is plotted as a function of X/k. In order to demon-
strate certain linear properties of the critical volume we have expressed the volume as its
square root (V/k?)%. The lower part of the main curve is also plotted on an expanded scale to
help with interpolation at small values of X/k.

Though we have not shown complete generating curves, the volume properties of a drop at
constant X/k show a clearly defined maximum and again an envelope curve may be drawn.
Each curve crosses every other curve, thereby indicating, as before, that a stable and unstable
equilibrium state exists for each value of X/k and of V/k3®. Only small portions of each volume
curve are shown for the sake of clarity, hence few intersections are actually seen. The volume of
the critically stable meniscus divided by the plate radius cubed is plotted as a function of X/k
on logarithmic scales in figure 21, covering a very much wider range of plate radii. As with
figure 10 for the pendant drop, this plot is often more useful than figure 20, for interpolation
of experimental results.

When the plate radius X/ is very small the critical angle of the meniscus approaches 270° and
the total force supporting the volume ¥ is given approximately by

2nXy = pgV
or VIXk? = 27 (30)
When Xk < 0.2, equation (30) fits the slope and intercept of figure 21 with remarkable
accuracy.
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B A

0.5
0.3
0.2

0.1

10 20 B

] 1
0 1 2 A
Xk
F1cure 20. Sessile-drop stability, volume, expressed as (V]%)}, of a drop as a function of plate radius; the envelope
curves are the critical volumes as a function of plate radius. Shape factors # are shown for most profiles.

10t
unstable
10%F
?i R
=
100+ stable
102
10-2 1 ]
1071 10t 103
X|k

Ficure 21. Sessile-drop stability: critical volume ratio, V|X? of a volume-radius limited drop
as a function of plate radius. £ values are indicated.
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When the plate is large the critical angle of the meniscus approaches 180° and the volume of
liquid approximates to that of a disk of height Z, where

pgZ?2 = 2y or Z2[k* = 4. (31)

The volume V of a large drop approximates to that of a disk so that
V& nX?Z = 2nX% (32)
or (VIR3): ~ (2r)iX/E, (33)

AN

¢[deg
7

220

—

200 1 A [l I

s
10

=

X[k

Ficure 22. Sessile-drop stability: critical meniscus angle of a volume-radius limited drop
as a function of plate radius.

4102

4100

10 oI ool
Xk

Ficure 23. Sessile-drop stability: critical shape factor of a volume-radius limited drop
as a function of plate radius.
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which fits the plot of figure 20 with very good accuracy when X/k > 2.0. The upper limiting
straight line portion of figure 20 is seen equally well by the corresponding linear portion of the
plot of figure 21. In the intermediate section of figure 21 the meniscus angle for critical con-
ditions varies between 180 and 270° in the way shown in figure 22.

Interpolation of the critical angle proved to be a difficult procedure, and this is reflected in
the scatter of the data. The main point of this figure is that as the plate increases in size so the
drsree of overhang becomes smaller and smaller. Thus a large sessile drop rolling towards the
edge of a flat plate will tend to ‘pour’ over the edge as soon as it is reached. The shape factor g
from which these data have been derived is plotted as a function of X/k in figure 23. The plot
is particularly helpful in interpolating data between the limits of application of equations (30)
and (33).

Sessile drops, in general, tend to pour over the edge of the disk and, because of the low
adhesion between liquid and the supporting plate already referred to, tend to leave no liquid
behind once they have reached the critical conditions.

or

Z [k
o

108 10t 105 106 107 108
D’?ﬂ\ NN
—r"/. N T N R
0 10
X[k

Ficure 24. Sessile-drop stability; pressures of a captive bubble as functions of plate radii. The envelope curve
is the critical pressure of a pressure-radius limited sessile drop, 8 values indicated.

Pressure—radius limited sessile drop

Let a pressure head be connected to the solid-liquid interface of a sessile drop in the manner
indicated in figure 6 (ii) but in such a way that the hydrostatic pressure may be varied at will.
The pressure is successively increased from zero and the volume builds up towards some critical
value at which point dZ;/dV and dZi/df become zero. At this point the pressure is a maximum,
and further increases in the volume of the drop take place in an uncontrolled manner until the
volume-radius limited maximum is reached, when the drop falls away.

The maximum pressure at the level of the plate was again obtained by the envelope construc-
tion method in figure 24. It is, of course, clear that the sessile drops of this figure are plotted as
captive bubbles and that they are drop profiles positioned from the free surface according to

44 Vol. 275. A.
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514 J.F.PADDAY AND A.R.PITT

the value of Z,, the hydrostatic height at the apex. At the critical pressure drops on plates of
small radius take on a nearly hemispherical shape with ¢ = 90°. Drops on very large plates
reach critical pressure conditions when ¢ approaches 180°, at which point the pressure-radius
limited critical shape becomes equal to the volume-radius limited shape. Under these con-
ditions the shape of the drop is that of a cylindrical meniscus.

The enveloping curve of figure 24 is generally hyperbolic and may be represented, when
X[k < 0.4, by

Zi X[k = 2, (34)

which follows from the Laplace equation applied to a hemisphere resting on a very small plate.
For very large plates, i.e. when X/k > 4.0,

(Zifk—2) X[k = 0.60. (35)

Equation (35) is very similar in nature to the expression developed by Rayleigh (1915) and
its modified form (Padday & Pitt 1972), for the pressure at the base of a sessile drop.

The pressure-radius limited sessile drop was investigated experimentally by Dupré as
reported by Bouasse (1924). Their equation approximates to equations (34) and (35) at
limiting conditions.

Volume—angle limited sessile drop

The most common and widely investigated axisymmetric meniscus is that of the volume-
angle limited sessile drop shown in figure 6 (iii). The equilibrium of sessile drops of this type
has been the subject of some speculation (Pethica & Pethica 1957), though in fact the equi-
librium thermodynamics has been treated rigorously by Johnson (1959) using the virtual work
principle.

The analysis from these tables, the work of Johnson, and simple observations, all indicate
that sessile drops of this type are always stable. The volume of the sessile drop may increase
indefinitely without any approach to a critical state. Thus all volume-angle limited sessile drops
are stable and as such are very useful for observing the angle of contact between the liquid and
the solid.

Pressure—angle limited sessile drop

The system shown in figure 6 (iv) is the pressure—angle limited system. It can never be realized
experimentally as drawn, because it cannot attain stable equilibrium.

Like the corresponding pendant drop system the first stage of meniscus formation takes place
at the orifice in the plate and growth is governed by the orifice radius and the hydrostatic
pressure. The sessile drop increases in size as the pressure is raised, until the meniscus angle
reaches the value of the contact angle. At this point, the drop spreads out over the flat solid
surface, and in so doing the pressure due to Laplace curvature diminishes. This diminution in
pressure results in instability. The critical stability point is reached either at the envelope curve
of figure 24 or at the point at which the meniscus angle ¢ equals the contact angle — whichever
comes first.

6. STABILITY OF ROD-IN-FREE-SURFACE MENISCI

The rod-in-free-surface meniscus (r.i.fs.) is formed when a wetted rod is withdrawn from
a free surface of a liquid and also when an unwetted disk is pressed below a free surface. Four
of the more common types that are studied here are shown in figure 7. These menisci possess the
common property of being bounded by the free flat surface of the liquid. The unwetted disk
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produces a meniscus shape exactly similar to that of the rod, but with the difference that the
meniscus appears as a hole in the surface and its profile appears as a reflected image of that at
the rod.

The r.i.f.s. meniscus is formed by immersing the end or tip of a rod in the surface of a liquid
just enough to ensure good wetting. The rod is then raised vertically so that it is above the
general liquid level, as shown in figure 7. At first stable menisci are formed, but as the rod is
further raised the degree of stability decreases until at a critical height the liquid bridge breaks
away.

Unlike the pendant and sessile drops, r.i.fis. menisci reach a maximum volume before
attaining the limiting height of the critically stable condition. Freud & Freud (1930) recognized
this in their treatment of the Du Noiiy ring meniscus. The maximum pull on the rod, equivalent
to that of the maximum volume of the meniscus is a property of considerable importance, but
as it is not directly related to stability properties it will not be considered here.

In principle, the same methods for obtaining the criteria for critical stability apply and these
criteria are set out in table 3. Again tabular interpolations and the envelope construction
method were used to obtain data for critical conditions of the r.i.f.s. menisci.

TABLE 3. STABILITY CRITERIA FOR ROD-IN-FREE-SURFACE MENISCI.

stable equilibrium critical equilibrium  unstable equilibrium

(i) Volume-radius limited dz, < dv 1 dz, dvV 1 dz, S EI_K 1

(X, Xp and £ constant) df’ = dpf’' nX? dg’ ~ df’ = X? dg’ = dp'nX?
(ii) pressure-radius limited dz, dz, dz, 0

(X and  constant) ap <0 a0 e
(iii) Volume-angle limited dz, < dv 1 dz, dv 1 dz, S ar 1

(6, Xp and k constant) dg’ ~ dp’ nX? dp’ ~ dp’nX? dg ~ dpf’ nX?
(iv) pressure-angle limited not met not met ¢—180 > 0

(0 and % constant)

2 20 30 40 50
10
g 3,42
1
0.5
e 0 20.3
N Iro}
05
1072 ~
107
1. — 4 1 1 1 1
0 2 4 6
X[k

Frcure 25. R.i.f.s. meniscus stability: pressure of a pressure-radius limited meniscus as a function of rod radius.
The envelope curve is the maximum or critical pressure function. Shape factors, f’, are shown for most
profiles.

Pressure—radius limited r.i.f.s. menisci

In this system (figure 7 (ii)) it will be assumed that the tip of the rod is completely wetted
and that the contact angle is 0°. We have obtained energy profiles for this type of meniscus,
the same in character as those for the pendant and sessile drops. They are not presented here
as they do not show any new features.

The condition for stability is represented by the maximum height above the free surface,
i.e. the maximum pressure at the tip. This height, Z/k, is expressed as an envelope function of

44-2
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516 J. F.PADDAY AND A.R. PITT

X/k in figure 25 by plotting the profiles given by successive shape factors. As in previous work
(Padday 1971) the shape factor, 8, of an r.i.f:s. meniscus is defined as

B’ = pgR}(270°)[y. (36)

R,(270°) is the horizontal radius of curvature at the thinnest part of the neck. Although the
complete profile at each f’ value is not drawn, it is clear that each curve again intersects every
other, each pair intersecting only once within the envelope. Thus for a given value of X/k, and
a value of Zi/k below the critical value, two shapes are possible, those corresponding to the
stable and the unstable equilibria. The profile with the larger value of 8’ represents the stable
equilibrium shape, and that with the smaller value the unstable equilibrium shape. As with
energy profiles of pendant drops, the difference in energy between the stable and unstable
state may be regarded as a measure of the degree of stability.

O/deg

or o 0 g

- 50

@

r [

4 ®

b ]

100

d ®

= IF °
Nt .unstable

/ stable

T

I - 1
1072 102
X[k
Ficure 26. R.if.s. meniscus stability: critical pressure of a pressure—radius limited meniscus as a function of rod
radius. The function (O) is for contact angle § = 0°. Other curves represent critical conditions when the
stability is limited by the value of 8 (indicated). ®, limiting values for very large drops.

The data of figure 25 cover only a small range of X/k. A much wider range has been plotted
logarithmically in figure 26. The envelope curve of figure 25 is represented by the curve at
6 = 0° on figure 26.

The critical height of profiles formed with very large rods approaches the limiting value of
that of a cylindrical meniscus. This height, Z;, thus becomes equal to the limiting height of a
sessile drop (Padday & Pitt 1972). Substituting Z; in the sessile drop equation gives

pgZt = 2(1—cosg). (37)
When ¢ = 180°, Zilk = 2. (38)

The meniscus angle, ¢, of the r.i.f.s. is not equal to the angle of contact, 6, of the liquid to the
horizontal solid. Instead, figure 7 (iii) shows that
¢—180 = 0. (39)


http://rsta.royalsocietypublishing.org/

'\
A\
JA \
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A\
A

y \

A
/%

THE ROYAL A

9

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE STABILITY OF AXISYMMETRIC MENISCI 517

An important feature of pressure-radius limited r.i.f.s. menisci is that the critical meniscus
angle ¢ varies between 180° for very large rods and 270° for very small rods. The value of ¢ for
critical conditions is plotted as a function of X/k in figure 27. The plot shows, for instance, that
the meniscus formed by a wetted rod of 2.5 cm radius receding from water (k = 0.27) would
reach critical conditions when ¢ = 180°, but remains stable when ¢ = 185°. With smaller rods,
X[k < 0.01 the menisci appear to reach a limiting value between 255° and 260°. This latter
point requires confirmation as our errors are rather larger than average in this region.

2701
% ‘m\
\X
2401 \ stable
3
= unstable
210p )\x\
180 ! 1 1 ke otk
102 1 102

X[k
Ficure 27. R.i.f.s. meniscus stability: critical meniscus angle of a pressurc-radius limited meniscus

as a function of rod radius.

X T~

: ™~

2408 \\ Stable

i unstable \

¢[deg
x
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- \
180 =
1074 1072 1 102
ﬁl

Ficure 28. R.i.f.s. meniscus stability: critical meniscus angle of a pressure-radius limited meniscus
as a function of the shape factor f’.
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518 J. F.PADDAY AND A.R.PITT

The meniscus angle, ¢, for critical conditions is also related to the shape factor, #’, in
a manner similar to that with X/k. The critical angle of the pressure-radius limited r.i.fis.
meniscus is plotted as a function of log A’ in figure 28. At critical equilibrium any perturbation
of the system to a lower meniscus angle or lower shape factor results in instability and rupture.
However, corresponding increases in either ¢ or A" results in the meniscus becoming transiently
stable.

Experimentally one measures both the rod radius X, and the limiting height Z; reached at
critical conditions, £ being unknown. Providing the tip is completely wetted, X/k may be found
from the ratio Z;/X in the ¢ = 0—30° curve of figure 29; hence £ is derived.

10

unstable

Zi|x

0.1f stable

0.01

130

X/k 120

Frcure 29. R.i.f:s. meniscus stability: critical pressure ratio of a pressure-radius limited meniscus as a function of

the rod radius. The function is for contact angle § = 0-30°. Other curves represent critical conditions
when the stability is limited by the value of 0 (indicated).

] 1 4
101 101 170 160 // 103
YN
110 \ 80

Pressure—angle limited r.1.f.s. menisci

The criterion for stability and for critical conditions radically changes when the liquid forms
a finite angle of contact with the undersurface of the rod as shown in figure 7 (iv).

Consider a plate, the radius, X/k, of which equals 2.0, and possessing a contact angle, 6, of 50°
with the liquid which it is about to support. The plate is now lowered so that it just touches and
is wetted by the free surface of a liquid. The effective meniscus angle, ¢, as defined in figure 7,
assumes a value of 360°, The plate is now raised slowly so that a meniscus is formed between
its edge and the free surface, and the meniscus angle decreases from 360° towards the value
192°. However, equation (39) shows that the contact angle limits the meniscus angle to a value
of 230°. At a certain stage in raising the plate the meniscus angle reaches 230°, and further
movement causes the meniscus to recede on the underside of the plate. Recession of the meniscus
results in a diminution of both X/k and the critically stable value of Zi/k (figure 26). The drop
in pressure inside the liquid at the underside of the plate results in further recession until the
liquid bridge breaks away. The condition of critical stability of the pressure-angle limited sys-
tem is thus reached when the meniscus angle reduces to the value specified by equation (39).
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The parameters for critical stability of an r.i.f.s. meniscus limited by contact angle are best
represented as a further restriction on the pressure-radius limited r.i.f.s. data already presented.
The critical data are shown in figure 26 where Z;/k is plotted as a function of X/k for contact
angles at 10° intervals between 0 and 180°. These data were extracted directly from the tables.

As before, the ratio Z;/X has been plotted as a function of X/ for the contact angle limitation
in figure 29. The main point to emerge from these data is that the meniscus as drawn in
figure 7 (iv) is always unstable; it must either move outwards to the edge of the plate or inwards
and then break away. The true critical stability represented by these data is rather a restriction
on the pressure-radius limited data.

Volume—radius limited and volume—angle limited r.i.f.s. menisci

The r.i.fis. menisci considered so far are of the type where the volume of liquid displaced
from the free flat surface is very small compared with the liquid forming the whole system. In
many experimental set-ups a reservoir sufficiently large is impossible to obtain, hence the total
volume of liquid in the system is limited, as shown in figures 7(i) and 7(iii). The constant
volume of these systems places a severe restriction on them and it is found both experimentally
and from general theoretical considerations that a restricted volume increases the stability of
an r.i.fis. meniscus.

In order to treat the volume restriction in a simple way we introduce the term ‘excluded
volume’, V,, which is defined as the volume of vapour bounded by the liquid-vapour interface,
the horizontal plane of the rod or plate, and the sides of the dish of radius X,. It follows that

nX3Zi—V, = V. (40)

By differentiating equation (40) with respect to a small perturbation in £’ at constant total
volume of liquid in the system we obtain

(dZi/dB")r, x40, x o ¢ = Ae[nXFdB'+dV[nXFdp". (41)

Equation (41) is applied at constant &, X and ¢ or X. For conditions of critical stability we
find the excluded volume, V,, reaches a maximum value so that for small perturbations,
dV,/dp’ = 0. This is because the change in meniscus volume exactly equals the change in
volume below the free surface of liquid in the dish. (Note that the free surface rises or falls with
the perturbation.) At critical stability

(AZy/df') z, x4k, x 0rp = AV[mXZAS, (42)

which is the condition given in table 3 when ¥, has attained its maximum value. If the Lh.s. of
equation (42) is greater than the r.h.s. the menisci of figures 7 (i) and 7 (iii) are unstable and if
less, then they are stable. The difference is equal to the term dV,/rX3dpA’ in equation (41).
Systems limited by volume can be either angle limited, figure 7 (iii), or radius limited,
figure 7 (i), but with the restriction that the volume of liquid is limited by the size of the dish.
We consider first the angle limited r.i.f.s. meniscus as it is somewhat simpler to understand.
Only large rods are considered, and circular dishes such that Xy/k > 10. Also the angle of the
free flat surface to the walls of the dish is always regarded as being 90°. To produce the meniscus
the rod is withdrawn from the liquid as with the other r.i.fis. systems. As the rod is raised the
meniscus forms at the edge of the rod and the meniscus angle, which starts at 360°, diminishes
toward 180°. At some stage of withdrawal the rod will become limited by the contact angle
according to equation (36), and the meniscus will recede at the under surface of the tip.
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However, the meniscus will not necessarily recede to the point at which it breaks away as
happened with the corresponding meniscus at a semi-infinite surface, because the very process
of receding decreases the volume in the meniscus, which in turn raises the level of the free flat
surface in the dish.

The point of critical stability is reached when equation (42) holds. We have analysed the
tables for four contact angle conditions, 0, 45, 90 and 135° and have found it easiest to express
the results either as excluded volume plotted against dish radius (figure 30), or as critical
height against dish radius (figure 31). The slope of the double logarithmic plot of figure 30

45° o

90, w0 4108
135°—»'
4105
unstable 5
=
N
4104
stable
L 1 1 103
103 102 10 1
X,k

Freure 30. R.i.fis. meniscus stability : critical or maximum excluded volume of a volume-angle limited
meniscus as a function of dish radius. Limiting contact angles are indicated.

unstable

=
N 1he
®135°
"
stable
ok 1 : 1
10 10% 103
X, [k

Ficure 31. R.i.fs. meniscus stability: critical meniscus height of a volume-angle limited meniscus
as a function of dish radius for angles of contact indicated.
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demonstrates clearly the square relation of equation (40) since under these conditions ¥ is small
compared with V,. The main feature of the data of figures 30 and 31 is that even very large
containers completely alter the nature of the stability and change it from pressure limited to
volume limited conditions. For this reason it is very unusual to find experimental conditions
under which the stability of the system of figure 7 (ii) can be studied.

In order to interpolate for angles of contact between those plotted in figure 30 we have
assumed linearity at all other angles and have plotted in figure 32, the intercept X3/k with the
line V,[/k? = 10 of figure 30 as a function of the cosine of the contact angle. The linear plot then
enables all other critical excluded volumes to be derived provided that the contact angle is
known. The meniscus heights of figure 31 are used experimentally and show that for a large
dish the height approaches the limiting height set by equation (37).

2.5

)

20p

X,k

15

0l ! 1 L
1"“1 0 1

cos (¢ — 180)

Ficure 32. R.i.f.s. meniscus stability: dish radius of a volume-radius limited meniscus as a function of
cos (¢ — 180), where ¢ is the critical angle of the meniscus. Data for V_[k3 = 10.

The volume-radius limited r.i.f.s. meniscus of figure 7 (i) is in fact only a special case of the
volume-angle limited system. If the rod radius X/k is relatively small, then on raising the rod
from the dish of liquid as in figure 7 (i) critical conditions are reached before the meniscus angle
reaches the contact angle condition of equation (39). The critical stability criterion of such a
system is given in table 3, but in experimental systems involving very small rods the pressure—
radius limited data of figure 26 provide accurate results. For larger rods no data are given
because the complex calculation procedure hardly merits the value of the results obtained. Such
systems are more appropriately treated as liquid bridges.

7. DiscussioN

In this study we have set out in thermodynamic terms the Helmholtz free energy or work of
formation of a bounded meniscus in a gravitational field; defined the stable, unstable and
critical equilibrium states of bounded menisci; shown that the three main types of menisci may
have their stability conditions limited by volume or by pressure; analysed the variational
problem graphically and shown that a measurable parameter takes on a maximum or minimum
value at critical conditions; and presented numerical values of a wide range of meniscus
properties for critically stable conditions of twelve different systems.

45 Vol. 275. A,
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The determination of critical conditions involves certain new approaches, the most important
of which are the construction of energy profiles by using equilibrium tables in a ‘non-equilibrium’
way and the demonstration of a solution to the variational problem by graphical analysis.

The thermodynamic statements in the introduction are applicable to systems only where the
liquid and vapour phases are of a single component. The form of the thermodynamic equations
deviates from the usual treatments in that we have included external energy with the surface
free energy, following Everett & Haynes (1972). The equilibrium of a system is thus one which
the variations of the areas of the meniscus and of the potential energy due to raising or lowering
the centre of gravity, at constant temperature, £, and p, are the only contributions to the free
energy.

Justification of our hypothesis that axisymmetric perturbations of this study are those of
lowest energy rests first on the fact that breakaway, in the absence of extraneous sideways forces,
always occurs with axial symmetry. Secondly the change in pendant drop shape that does occur
in the early stages of breakaway appears to follow the shapes dictated by the energy profile for
the critical conditions such as that seen in figure 3. At later stages of breakaway potential energy
is lost by the system irreversibly and the drop accelerates away from the tip in a manner dictated
by kinetic and viscosity factors.

In two previous studies (Erle, Dyson & Morrow 1971; Erle, Dyson & Gillette 1970) the
gravity-free stability of liquid bridges has been investigated by variational analysis. Their
results represent the alternative volume-limited condition and not Plateau’s pressure-limited
condition, applied to soap films. Also their results are not comparable with the work of
Lohnstein (1906, 19074,b), who like us, studied the equilibrium and stability of drops in a
gravitational field.

The graphical analysis of this study enables one to derive the properties of a meniscus in its
critical state and it shows clearly that the intuitive step of Lohnstein (i.e. that maximum volume
is reached at the critical condition) was correct (figure 3). We have further found that the
method used by Lohnstein for calculating the maximum volume (using a truncated series
expansion of sin @) is sufficiently accurate for many experimental purposes.

In figure 33 the critical volumes of a pendant drop obtained from our data, together with
Lohnstein’s results, are plotted as a function of tip radius. The deviation between the two results
is less than 1 9,. It may be seen too that Tate’s law,

Ik = 2nXJk, (43)

is only approximate to + 18 9%, and then only when X/k < 3.2, and measures only the critical
volume and not the amount of liquid falling away as Tate had supposed.

Lohnstein also noted that when the critical meniscus angle of a pendant drop reached 0°,
a maximum value of 18.84 for V/k* was reached. We confirm this maximum value (but with
a revised value of 18.88) by providing data for the ‘bath tap’ type or critical stability of figure 9,
obtained when X/k > 3.2. We suggest designating this maximum volume situation, ¢ = 0°,
as the ¢ Lohnstein point’ in recognition of his correct predictions (without the aid of modern
computers). The Lohnstein point also appears on the critical data of the volume-angle limited
pendant drop given in figure 16, showing that the drop at critical conditions, hanging from
a ceiling, possesses this volume.

The tables and the integration procedure giving the basic data are accurate to +0.001 9,
(Padday 1971). However, this accuracy was not maintained in the data presented here because
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interpolation procedures would have involved very long and hence costly computations.
Instead we have adopted truncation procedures which have reduced the accuracy to + 0.05 %,
However, we find that errors in interpolating angles was no better than + 2° as may be seen in
figure 22. But angles were not basic data, hence their inaccuracy did not impair the quality
of the other data.

The r.i.fs. volume-limited stability data were difficult to derive accurately because the
envelope construction method could not be applied easily. We therefore present only outline
data that give an insight into the problem and with sufficient accuracy ( +19,) for general
experimental work.

A

20

Viks

N

XJk

Ficure 33. Comparison of critical and separating volumes of a volume-radius limited pendant drop as a function
of tip radius. A, Tate’s equation; B, Rayleigh’s equation; C, this study; X, Lohnstein’s critical volumes;
@, Lohnstein’s separating volumes; H, the Lohnstein point; ©, Harkins & Brown’s drop volumes; 3¢,
Picknett’s separating volume; A, Izard’s separating volume, CgHg—H,O; +, Halligan & Burkehart’s critical
volumes.

The analysis of this study is thus sufficiently precise to confirm that:

(i) At critically stable conditions, volume-limited menisci reach a maximum volume at
Laplace equilibrium.

(ii) At critically stable conditions, pressure-limited menisci reach a maximum pressure at
Laplace equilibrium.

These conclusions arise from the properties of the energy profiles and their variation with
volume or pressure as shown in figures 3 and 18. In each profile we find that the points at
Laplace equilibrium fall exactly at the bottom of the trough and at the crest of the hump.

In order to compare the theoretical results of this study with experimental data, one must
recognize that the critical volumes of this study represent the total volume of the drop or
meniscus before detachment and not the amount falling away. Also in real systems the actual
critical point may never be reached if vibrations are allowed to perturb the system and initiate
premature rupture. In figure 33 the ‘drop-weight’ volumes obtained experimentally by
Rayleigh (1899) and by Harkins & Brown (1919) show clearly the difference between the
critical volume and the amount falling away. Lohnstein attempted to calculate the amount
left behind after breakaway, on the basis that the meniscus angle of the remainder was the same
as that of the critical pendant drop. This supposition is surprisingly good when X/k < 2.0

45-2
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(figure 33) but only holds at low viscosity. The drop volume falling away is thus reasonably
predicted by Rayleigh’s formula (Rayleigh 1899).

VIk? = 3.8X[k (44)
for Xk < 2.5.

Picknett (1970) has made available the photographs of pendant drops just before rupture,
and we find the experimental parameters of his critical shapes agree within + 0.5 %, with the
values obtained theoretically here. His drop volume for the separating drop agrees well with
other work as shown in figure 33.

The breakaway of pendant drops has received much attention recently, mainly from those
studying the break-up of liquid jets. Among these Halligan & Burkhart (1968) used an empiri-
cal form of Bashforth & Adam’s equation in order to calculate the profile of a separating droplet.
Their results are plotted in figure 33 and indicate predictions of the critical volume (not the
amount breaking away) with about 5 %, error; in order to plot their data we have assumed their
critical meniscus angle to be ¢ = 0°.

Izard (1972) also studied the break-up of liquid jets emerging from a small unwetted orifice.
His result for the benzene—water system extrapolated to zero flow has been plotted in figure 33
using the densities and interfacial tension values of Harkins & Young (1929). Their point lies on
the curve of figure 33 in the region where the critical volume of the pendant drop meniscus is
almost equal to the volume falling away. The difference between the critical volume of a pen-
dant drop and the amount falling away is viscosity dependent, hence Harkins & Brown’s data
in figure 33 is only a special case for low viscosity liquids. Complete resolution of this difference
must await a full kinetic analysis of the pendant drop breakaway once the critical volume is
reached.

Experimental verification of the other eleven systems of this investigation is not yet complete.
However, we have investigated experimentally the systems consisting of a rod drawn from a free
surface (r.i.fs.) and its corresponding mirror image, the hole in free surface, and we find from
our limited number of experiments good agreement between theory and practice. However,
experimental work will be reported separately.

It is believed that the critical data presented in this study have been compared with as wide
a variety of data as we could find in the literature, and in no case have we been able to find
disagreement other than that arising from normal experimental error.

The authors record their grateful thanks to Professor D. H. Everett, Dr T. D. Blake, Dr M.
Haynes, Mr A. Marriage and Dr R. Picknett for the valuable and friendly discussions and are
greatly appreciative to Dr Picknett for making available some of his unpublished results which
appear in figure 33.

8. ApPENDIX A. IDENTIFICATION OF dW wiTH THE HELMHOLTZ FREE ENERGY dF

This treatment follows that of Gibbs (190o6) and of Everett & Haynes (1972) and their
further suggestions. The work done on the system by compressing the syringe isothermally and
reversibly as in figure 1 is dW.

From the first law, the change in internal energy

dU = dwW+dQ. (1A)
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The entropy change is given from the second law
dS = dQ/T+d;S, (2A)

where diS > 0 and ;S is the entropy arising from irreversible processes within the system.
The total internal energy change then is

dU = TdS+dW - Td:S. (3A)
By differentiating the definitive equation for Helmholtz free energy
F=U-TS (4A)
and combining this with equation (3A) we obtain
dFf = dW—-TdiS—SdT. (5A)
At constant temperature 7,
dFf = dW-Td;S. (6A)

At equilibrium both dF and d;S equal zero, therefore
diw = o. (7A)

For small departures from equilibrium, d# equals d and the virtual work principle may
be used to derive energy changes in the system because the term 7°d ;S is vanishingly small. For
larger deviations

Td;S = TdA(dy/dT). (8A)

However, the term 7'd;S is always small compared with d/, hence

dF =dWw (9A)
for the perturbations of this study.

9. APPENDIX B. METHOD FOR CALCULATING THE ENERGY PROFILE
OF A BOUNDED MENISCUS

1. Obtain a set of tables of axisymmetric meniscus profiles (Padday 1972). Alternatively
computer programs may be used.

2. Define the value of & either by arbitrary choice, or from experimental values of p, g and 7.

3. Select the tables appropriate to the form of the bounded meniscus.

(a) Sessile drop.
(b) Pendant drop.
(¢) Rod-in-free-surface.

4. Define two other experimental properties of the system. These properties are used to set
the shape factor and the limit or boundary conditions of the equilibrium shape being sought in
the tables and must remain constant.

The experimental properties of a meniscus from which two may be chosen are more usually:

(i) Volume of the drop or meniscus.

(ii) Angle of contact, 6, of the meniscus with the support.

(iif) The radius, X, of the solid surface supporting the meniscus.

(iv) The axial height, Zi, of the free liquid level from the tip or the supporting surface of

the meniscus.
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5. Fix the values of the two chosen properties which limit the type of stability (e.g. for
a volume-radius limited system fix V/k® and X/k).

6. Determine the shape factor g, (pgb?/y), and hence the appropriate table in which the stable
equilibrium is to be found. An approximate value of b, the radius at the lower extremity of the
drop, is measured or obtained by regarding the drop as spherical so that b = (3¥/4x)}. This
value gives an approximate shape factor and leads to the useful range of the tables.

The ratios of the experimental values, V/X? and X[k are used to find the equilibrium value
of £ and ¢, by interpolation in the tables. Very often the equilibrium value of £ lies between two
tables, but simple scaling procedures enables one to estimate an accurate value.

7. Using the same interpolative procedures calculate the area of the pendant drop from the
tables for this same condition.

8. Find the position of the centre of gravity, Zg, of the drop. This may be done with sufficient
accuracy by first summing the products of the volume increment with the distance of the incre-
ment from the tip (at each 5° interval). The sum of the products is then the potential energy
term of equation (9) and this when divided by the total volume gives the distance of the centre
of gravity from the tip.

In the data of figures 2, 3 and 16 the potential energy and centre of gravity of each shape were
obtained more accurately by carrying out the summation at every 0.025° intervals by means
of a computer.

9. Calculate the total energy or work of formation of the meniscus from equation (9).

10. Obtain the energies of the meniscus in its perturbed shapes by choosing arbitrary shape
factors slightly displaced from the equilibrium value. In each table we scan for one or possibly
two values of ¢ where the value V/X? equals that of the experimental starting conditions. At
this point of correspondence, X[k’ in the tables does not equal X/k experimental, because the
value of k" in the tables cannot be the same as the experimental value.

11. Define a magnification M by

M = (X[k (expt.))/(X[k' (tables)). (1B)

12. Find in the tables the surface area and the position of the centre of gravity in the same
manner as for the equilibrium point and the total energy of the perturbed state is now obtained

from
Wiyk? = AM?[k'®— VZgM*[k'* — nX2M?cosO/k". (2B)

13. Obtain further energy points using other tables (8 values) so that finally the whole profile
is obtained.
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SyMBOLS

area of liquid—vapour interface

area of solid-liquid interface

area of liquid—vapour interface at beginning of drop growth
principal radius of curvature at apex of drop or bubble
constant of integration

differential quantity

Helmbholtz free energy of a meniscus

functions

gravitational acceleration

meniscus coeflicient, (y/pg)% (&’ = non-equilibrium value)
magnification factor

vapour pressure

potential energy in relation to gravitational force

energy supplied to the system

horizontal
vertical
reversible entropy of meniscus formation

irreversible entropy of meniscus formation

absolute temperature

internal energy of meniscus formation

volume of liquid forming the meniscus

volume excess of meniscus state over bulk liquid state

excluded volume: volume of vapour in a volume-limited r.i.f.s. meniscus
bounded by the cylinder of the dish perimeter and the horizontal plane of the rod
volume of vapour in the closed system of figure 1

work performed on the system to form a meniscus

horizontal coordinate or radius of tip or plate supporting a meniscus

radius of a circular dish in an r.i.fs. system

radius of an orifice

vertical co-ordinate or meniscus height

height of apex of meniscus from free surface

(Zy— Z) height of free surface from supporting surface

height of supporting surface from centre of gravity of the meniscus

~

=]

SmeaShhh
L
w

[g"&g?r%

}principal radii of curvature

<

RS

NN NN«

NI M IS

N

NN


http://rsta.royalsocietypublishing.org/

AGHORS SoCTETY A

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL
oF SOCIETY A

PHILOSOPHICAL
TRANSACTIONS

Downloaded from rsta.royalsocietypublishing.org

528 J. F.PADDAY AND A, R.PITT
g shape factor pgb?y
Yo shape factor of r.i.f.s, menisci pgR2(270°) [y
b% surface tension of liquid-vapour interface
Vi specific free energy of solid-liquid interface

specific free energy of solid—vapour interface

angle of contact defined by equation (2)

density difference between the liquid and its vapour

meniscus angle: angle between principal radius and vertical axis of symmetry
3.14159

EIRSE


http://rsta.royalsocietypublishing.org/

